设等差数列 a n 的公差为 d ,前 n 项和为 S n ,等比数列 b n 的公比为 q .已知 b 1 = a 1 , b 2 = 2 , q = d , S 10 = 100 . (Ⅰ)求数列 a n , b n 的通项公式; (Ⅱ)当 d > 1 时,记 c n = a n b n ,求数列 c n 的前 n 项和 T n .
(本小题满分12分)已知为等差数列,且.(I)求数列的通项公式;(II)的前项和为,若成等比数列,求正整数的值
(本小题满分10分)已知函数的定义域为A,函数的值域为B.(I)求;(II)若,且,求实数的取值范围.
(本小题满分14分)已知函数在处取得极值.⑴求的解析式;⑵设是曲线上除原点外的任意一点,过的中点且垂直于轴的直线交曲线于点,试问:是否存在这样的点,使得曲线在点处的切线与平行?若存在,求出点的坐标;若不存在,说明理由;⑶设函数,若对于任意,总存在,使得,求实数的取值范围.
(本小题满分14分)已知定义域为R的函数是奇函数.(1)求的值;(2)用定义证明在上为减函数.(3)若对于任意,不等式恒成立,求的范围.
(本小题满分14分)某种商品的成本为5元/ 件,开始按8元/件销售,销售量为50件,为了获得最大利润,商家先后采取了提价与降价两种措施进行试销。经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量Q(件)与实际销售价x(元)满足关系:
Q=
[