(理)(本小题共14分)已知函数 (1)若 时,函数在其定义域内是增函数,求b的取值范围 (2)在(1)的结论下,设函数 ,求函数 的最小值;(3)设函数的图象C1与函数的图象C2交于P,Q两点,过线段PQ的中点R作x轴的垂线分别交C1、C2于M、N两点,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由。
已知抛物线:的焦点为,、是抛物线上异于坐标原点的不同两点,抛物线在点、处的切线分别为、,且,与相交于点. (1) 求点的纵坐标; (2) 证明:、、三点共线;
如图, 是边长为的正方形,平面,,,与平面所成角为. (Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值; (Ⅲ)线段上是否存在点,使得平面?若存在,试确定点的位置;若不存在,说明理由。
已知命题:在上是增函数;命题函数存在极大值和极小值。求使命题“且”为真命题的的取值范围。
已知函数,其图象在点处的切线方程为 (1)求的值; (2)求函数的单调区间,并求出在区间[-2,4]上的最大值.
已知函数, ,,、. (Ⅰ)若,判断的奇偶性; (Ⅱ) 若,是偶函数,求; (Ⅲ)是否存在、,使得是奇函数但不是偶函数?若存在,试确定与的关系式;如果不存在,请说明理由.