设等差数列 a n 的公差为 d ,前 n 项和为 S n ,等比数列 b n 的公比为 q .已知 b 1 = a 1 , b 2 = 2 , q = d , S 10 = 100 . (Ⅰ)求数列,的通项公式; (Ⅱ)当 d > 1 时,记 c n = a n b n ,求数列 c n 的前 n 项和 T n .
(本小题满分7分)选修4-4:极坐标与参数方程 在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知直线的极坐标方程为(为常数),圆的参数方程为(为参数). (1)求直线的直角坐标方程和圆的普通方程; (2)若圆心关于直线的对称点亦在圆上,求实数的值.
(本小题满分7分)选修4-2:矩阵与变换 已知线性变换把点变成了点,把点变成了点. (1)求变换所对应的矩阵; (2)求直线在变换的作用下所得到的直线方程.
(本小题满分14分)已知函数(). (1)当时,求函数的图象在点处的切线方程; (2)设,求证:当时,; (3)若函数恰有两个零点,(),求实数的取值范围.
(本小题满分13分)如图,在四棱锥中,侧棱底面,,,,,是棱中点. (1)求证:平面; (2)设点是线段上一动点,且,当直线与平面所成的角最大时,求的值.
(本小题满分13分)我国东部某风景区内住着一个少数民族部落,该部落拟投资万元用于修复和加强民俗文化基础设施.据测算,修复好部落民俗文化基础设施后,任何一个月(每月均按天计算)中第天的游客人数近似满足(单位:千人),第天游客人均消费金额近似满足(单位:元). (1)求该部落第天的日旅游收入(单位:千元,,)的表达式; (2)若以一个月中最低日旅游收入金额的%作为每一天应回收的投资成本,试问该部落至少经过几年就可以收回全部投资成本.