(本小题满分12分)如图,某地一天中6时至14时的温度变化曲线近似满足函数(其中 ), (1)求这一天6时至14时的最大温差;(2)求与图中曲线对应的函数解析式.
已知椭圆的两个焦点为F1、F2,椭圆上一点满足 (1)求椭圆的方程; (2)若直线与椭圆恒有两上不同的交点A、B,且(O是坐标原点),求k的范围。
如图所示,四棱锥P—ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,。 (1)求线段PD的长; (2)若,求三棱锥P—ABC的体积。
已知向量 (1)若的夹角; (2)当时,求函数的最大值
设数列中,(c为常数,),且是公比不为1的等比数列。 (1)求c的值; (2)求数列的通项公式
解不等式: