在平面直角坐标系中,抛物线过点,,与轴交于点.(1)求抛物线的函数表达式;(2)若点在抛物线的对称轴上,当的周长最小时,求点 的坐标;(3)在抛物线的对称轴上是否存在点,使成为以为直角边的直角三角形?若存在,求出点的坐标;若不存在,请说明理由.
如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O. (1)求证:△ABC≌△DCB; (2)△OBC是何种三角形?证明你的结论.
如图:AB=AD,∠ABC=∠ADC=90°,EF过点C,BE⊥EF于E,DF⊥EF于F,BE=DF. 求证:RT△BCE≌RT△DCF.
如图,公路上A、B两站相距25km,在公路AB附近有C、D两学校,DA⊥AB于点A,CB⊥AB于点B.已知DA=15km,CB=10km,现要在公路上建设一个青少年活动中心E,要使得C、D两学校到E的距离相等,则E应建在距A多远处?
如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.
已知:如图,△ABC中,AB=AC,∠BAC=90°,若CD⊥BD于D点,且BD交AC于E点,问当BD满足什么条件时,CD=BE?并证明你的判断.