函数,(1)若时,求的最大值;(2)设时,若对任意,都有恒成立,且的最大值为2,求的表达式.
(本小题满分12分)已知椭圆:与抛物线:有相同焦点. (Ⅰ)求椭圆的标准方程; (Ⅱ)已知直线过椭圆的另一焦点,且与抛物线相切于第一象限的点,设平行的直线交椭圆于两点,当△面积最大时,求直线的方程.
(本小题满分12分)若函数的图象与直线为常数)相切,并且切点的横坐标依次构成公差为的等差数列. (Ⅰ)求及的值; (Ⅱ)求函数在上所有零点的和.
(本小题满分12分)某校高一数学兴趣小组开展竞赛前摸底考试.甲、乙两人参加了5次考试,成绩如下:
(Ⅰ)若从甲、乙两人中选出1人参加比赛,你认为选谁合适?写出你认为合适的人选并说明理由; (Ⅱ)若同一次考试成绩之差的绝对值不超过分,则称该次考试两人“水平相当”.由上述次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当”的概率.
(本小题满分12分)如图,平面为圆柱的轴截面,点为底面圆周上异于的任意一点. (Ⅰ)求证:平面; (Ⅱ)若为的中点,求证:平面.
(本小题满分12分)已知等差数列的前项和为,公差,,且,,成等比数列. (Ⅰ)求数列的通项公式; (Ⅱ)从数列中依次取出第2项,第4项,第8项,,第项,,按原来顺序组成一个新数列,记该数列的前项和为,求的表达式.