已知F1F2是椭圆=" 1" (a > b > 0)的两个焦点, O为坐标原点, 点 P(-1,)在椭圆上, 且是以F1F2为直径的圆, 直线: y=kx+m与⊙O相切, 并且与椭圆交于不同的两点A、 B.(Ⅰ)求椭圆的标准方程;(Ⅱ)当 , 且满足时, 求弦长|AB|的取值范围.
设 (1)如果在处取得最小值,求的解析式;(2)如果,的单调递减区间的长度是正整数,试求和的值.(注:区间的长度为)
表示等差数列的前项的和,且 (1)求数列的通项及;(2)求和……
已知函数.(1)求函数的单调递增区间;(2)若,求的值
已知.(1)若三点共线,求实数的值;(2)证明:对任意实数,恒有 成立
如图,已知抛物线焦点为,直线经过点且与抛物线相交于,两点(Ⅰ)若线段的中点在直线上,求直线的方程;(Ⅱ)若线段,求直线的方程