(本小题满分12分)已知定点,动点满足。(1)求动点的轨迹方程,并说明方程表示的曲线;(2)当时,求的最大值和最小值。
设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(3)的值;(2)当-4≤x≤4时,求f(x)的图像与x轴所围成图形的面积.
已知定义在区间(0,+∞)上的函数f(x)满足f=f(x1)-f(x2),且当x>1时,f(x)<0.(1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)=-1,求f(x)在[2,9]上的最小值.
已知f(x)=(x≠a).(1)若a=-2,试证明f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.
规定[t]为不超过t的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x,令f1(x)=[4x],g(x)=4x-[4x],进一步令f2(x)=f1[g(x)].(1)若x=,分别求f1(x)和f2(x);(2)若f1(x)=1,f2(x)=3同时满足,求x的取值范围.
已知c>0,设命题p:函数y=cx为减函数.命题q:当x∈时,函数f(x)=x+>恒成立.如果p或q为真命题,p且q为假命题,求c的取值范围.