(本小题共12分)已知焦点在轴的椭圆 的左、右焦点分别为,直线过右焦点,和椭圆交于两点,且满足,直线的斜率为 .(1)求椭圆C的标准方程;(2)设F为椭圆C的右焦点,T为直线上纵坐标不为0的任意一点,过F作TF的垂线交椭圆C于点P,Q.(ⅰ)若OT平分线段PQ(其中O为坐标原点),求的值;(ⅱ)在(ⅰ)的条件下,当最小时,求点T的坐标.
(本小题12分)在平面直角坐标系中,点为动点,分别为椭圆(a>b>0)的左右焦点.已知△为等腰三角形. (Ⅰ)求椭圆的离心率; (Ⅱ)设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹方程.
(本小题12分)如图,设P是圆上的动点,点D是P在x轴上的射影,M为PD上一点,且 (Ⅰ)当P在圆上运动时,求点M的轨迹C的方程; (Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度
(本小题12分)已知F1,F2分别是椭圆(a>b>0)的左、右焦点,A是椭圆上位于第一象限内的一点,=0,若椭圆的离心率等于. (1)求直线AO的方程(O为坐标原点); (2)直线AO交椭圆于点B,若△ABF2的面积等于,求椭圆的方程.
(本小题12分)(Ⅰ)求过点()且与双曲线有相同渐近线的双曲线的标准方程。 (Ⅱ)如图所示,A、B是椭圆的两个顶点,C是AB的中点,F为椭圆的右焦点,OC的延长线交椭圆于点M,且|OF|=,若MF⊥OA,求此椭圆的标准方程.
(本小题10分)设命题函数是上的减函数,命题函数,的值域为,若“且”为假命题,“或”为真命题,求实数的取值范围.