(本小题共12分)已知焦点在轴的椭圆 的左、右焦点分别为,直线过右焦点,和椭圆交于两点,且满足,直线的斜率为 .(1)求椭圆C的标准方程;(2)设F为椭圆C的右焦点,T为直线上纵坐标不为0的任意一点,过F作TF的垂线交椭圆C于点P,Q.(ⅰ)若OT平分线段PQ(其中O为坐标原点),求的值;(ⅱ)在(ⅰ)的条件下,当最小时,求点T的坐标.
设全集,集合=,=。 (1)求; (2)若集合,满足,求实数的取值范围.
设是的反函数, (Ⅰ)求. (Ⅱ)当时,恒有成立,求的取值范围. (Ⅲ)当时,试比较与的大小,并说明理由.
已知数列{}中,,,其中n=1,2,3…. (Ⅰ)求,;; (Ⅱ)令,设的前n项和,是否存在实数,使得数列为等差数列?若存在,试求出.若不存在,则说明理由.
已知函数 (I)求函数的最小正周期; (II)若函数的图象按平移后得到函数的图象,求在上的最大值.
如图,在棱长为1的正方体ABCD—A1B1C1D1中,AC与BD交于点E,与交于点F.(I)求证:⊥; (II)求二面角的大小(结果用反三角函数值表示).