已知椭圆C:的离心率为,是椭圆的两个焦点,是椭圆上任意一点,且的周长是.(1)求椭圆C的方程;(2)设圆T:,过椭圆的上顶点作圆T的两条切线交椭圆于E、F两点,当圆心在轴上移动且时,求的斜率的取值范围.
(本小题满分12分)等比数列中,已知(Ⅰ)求数列的通项公式(Ⅱ)若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和
(本小题满分12分)在中,,,,(1)求;(2)求的面积.
(本大题满分12分)的三内角的对边分别为,已知:成等比数列 (1) 求角的取值范围; (2)是否存在实数,使得不等式对任意的实数及满足已知条件的所有角都成立?若存在,求出的取值范围;若不存在,说明理由.
(本小题满分12分)设数列的前项和为,(1)求,;(2)设,证明:数列是等比数列;(3)求数列的前项和为.
(本小题满分12分)某工厂要建造一个无盖长方体水池,底面一边长固定为8,最大装水量为72,池底和池壁的造价分别为元、元,怎样设计水池底的另一边长和水池的高,才能使水池的总造价最低?最低造价是多少?