(本小题满分13分)已知动圆过定点且与轴截得的弦的长为.(Ⅰ)求动圆圆心的轨迹的方程;(Ⅱ)已知点,动直线和坐标轴不垂直,且与轨迹相交于两点,试问:在轴上是否存在一定点,使直线过点,且使得直线,,的斜率依次成等差数列?若存在,请求出定点的坐标;否则,请说明理由.
用数学归纳法证明: 1+++…+≥(n∈N*).
已知数列{an}的前n项和为Sn,且a1=1,Sn=n2an(n∈N*). (1)试求出S1,S2,S3,S4,并猜想Sn的表达式; (2)证明你的猜想,并求出an的表达式.
求证:二项式x2n-y2n (n∈N*)能被x+y整除.
用数学归纳法证明:对任意的nN*,1-+-+…+-=++…+.
已知等差数列{an}的公差d大于0,且a2,a5是方程x2-12x+27=0的两根,数列{bn}的前n项和为Tn,且Tn=1-. (1)求数列{an}、{bn}的通项公式; (2)设数列{an}的前n项和为Sn,试比较与Sn+1的大小,并说明理由.