2010年5月1日,上海世博会将举行,在安全保障方面,警方从武警训练基地挑选防爆警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选。假定某基地有4名武警战士(分别记为A、B、C、D)拟参加挑选,且每人能通过体能、射击、反应的概率分别为。这三项测试能否通过相互之间没有影响。求A能够入选的概率;规定:按人选人数得训练经费(每人选1人,则相应的训练基地得到3000元的训练经费),求该基地得到训练经费的分布列与数学期望。
(本小题满分14分)已知函数,(其中为自然对数的底数). (1)若函数在区间内是增函数,求实数的取值范围; (2)当时,函数的图象上有两点,,过点,作图象的切线分 别记为,,设与的交点为,证明.
(本小题满分14分)已知圆心在轴上的圆过点和,圆的方程为. (1)求圆的方程; (2)由圆上的动点向圆作两条切线分别交轴于,两点,求的取值范围.
(本小题满分14分)已知点在直线:上,是直线与轴的 交点,数列是公差为1的等差数列. (1)求数列,的通项公式; (2)求证:.
(本小题满分14分)如图,已知六棱柱的侧棱垂直于底面,侧棱长与底面边长都为3,,分别是棱,上的点,且. (1)证明:,,,四点共面; (2)求直线与平面所成角的正弦值.
(本小题满分12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一 人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了份,统计结果如下面的图表所示.
(1)分别求出,,,的值; (2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环 保之星”,记为第3组被授予“环保之星”的人数,求的分布列与数学期望.