如图,一艘轮船自西向东航行,在点A处测得北偏东68.7°方向有一座小岛C.继续向东航行80海里后到达点B处,此时测得小岛C在船的北偏东26.5°方向上.然后轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈,tan21.3°≈,sin63.5°≈,tan63.5°≈2)
如图,在△ABC中,AB=AC,∠ABC=72°. (1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法); (2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.
解方程组:.
先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.
如图1,已知直线y=kx与抛物线y=交于点A(3,6). (1)求直线y=kx的解析式和线段OA的长度; (2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由; (3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?
在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1. (1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数; (2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积; (3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.