已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则:①∠ABO的度数是 ;②当∠BAD=∠ABD时,x= 120°;当∠BAD=∠BDA时,x= 60°.20°;(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.
(本题8分)不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为. (1)求袋中黄球的个数; (2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.
(本题8分)为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为x m,绿化带的面积为y m2. (1)求y与x之间的函数关系式,并写出自变量x的取值范围; (2)当x为何值时,满足条件的绿化带的面积最大.
(本题8分)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABO的三个顶点都在格点上. (1)以O为原点建立直角坐标系,点B的坐标为(-3,1),则点A的坐标为; (2)画出△ABO绕点O顺时针旋转90°后的△OA1B1,并求线段OA扫过的面积.
(本题5分)解方程:
传统节日“春节”到来之际,某商店老板以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件。 (1)请写出每月销售该商品的利润y(元)与单价x(元)间的函数关系式; (2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?