如图,△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形; (2)若CE=8,∠BCF=120°,求菱形BCFE的面积.
计算:6tan2 30°-sin 60°-2sin 45°.
计算:cos30°+sin45°;
如图,抛物线y=x2-x-12与x轴交于A、C两点,与y轴交于B点.(1)求△AOB的外接圆的面积;(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动。问当t为何值时,以A、P、Q为顶点的三角形与△OAB相似?(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBAN面积的最大值.
如图,在矩形OABC中,OA=8,OC=4,OA、OC分别在x轴与y轴上,D为OA上一点,且CD=AD.(1)求点D的坐标;(2)若经过B、C、D三点的抛物线与x轴的另一个交点为E,请直接写出点E的坐标;(3)在(2)中的抛物线上位于x轴上方的部分,是否存在一点P,使△PBC的面积等于梯形DCBE的面积?若存在,求出点P的坐标,若不存在,请说明理由.
某商场购进一批单价为16元的日用品.若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数.(1)试求y与x之间的函数关系式.(2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w最大?每月的最大毛利润为多少?(3)若要使某月的毛利润为1800元,售价应定为多少元?