某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (Ⅰ)求当天小王的该银行卡被锁定的概率; (Ⅱ)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.
已知函数在取得极值。 (Ⅰ)确定的值并求函数的单调区间; (Ⅱ)若关于的方程至多有两个零点,求实数的取值范围。
已知的展开式前三项中的的系数成等差数列. (1)求展开式中所有的的有理项; (2)求展开式中系数最大的项.
从8名运动员中选4人参加4×100米接力赛,在下列条件下,各有多少种不同的排法?(用数字结尾) (1)甲、乙两人必须跑中间两棒; (2)若甲、乙两人只有一人被选且不能跑中间两棒; (3)若甲、乙两人都被选且必须跑相邻两棒.
已知函数. (1)求函数的图像在点处的切线方程; (2)若,且对任意恒成立,求的最大值; (3)当时,证明.
如图,已知直线与抛物线和圆都相切,是的焦点. (1)求与的值; (2)设是上的一动点,以为切点作抛物线的切线,直线交轴于点,以为邻边作平行四边形,证明:点在一条定直线上; (3)在(2)的条件下,记点所在的定直线为,直线与轴交点为,连接交抛物线于两点,求的面积的取值范围.