在直角坐标系中,为坐标原点,如果一个椭圆经过点P(3,),且以点F(2,0)为它的一个焦点.(1)求此椭圆的标准方程;(2)在(1)中求过点F(2,0)的弦AB的中点M的轨迹方程.
(本小题满分10分)已知直线的斜率为,且和坐标轴围成面积为3的三角形,求直线的方程。
如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB的平分线分别交AE、AB于点F、D. (Ⅰ)求∠ADF的度数; (Ⅱ)若AB=AC,求的值.
已知,设命题函数在R上单调递减,不等式的解集为R,若和中有且只有一个命题为真命题,求的取值范围.
在半径为的球内作一内接圆柱,这个圆柱的底面半径和高为何值时,它的侧面积最大?并求此最大值.
设集合 (1)若求实数的值; (2)若,.求实数的取值范围.