(本小题满分12分)设,,.(1)若,求的值;(2)若,求的值.
题满分12分) .如图,平行六面体ABCD-A1B1C1D1中,∠BAD=∠BAA1=∠DAA1=60°, (1)当AA1=3,AB=2,AD=2,求AC1的长; (2)当底面ABCD是菱形时,求证:
(本小题满分12分) 设命题:方程表示焦点在坐标轴上的双曲线,命题:。 (1)写出命题的否定; (2)若“或”为真命题,求实数的取值范围。
(本小题满分12分) 如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分. 过对称轴的截口是椭圆的一部分,灯丝位于椭圆的一个焦点上,片门位于另一个焦点上,由椭圆一个焦点发出的光线,经过旋转椭圆面反射后集中到另一个焦点.已知,,试建立适当的坐标系,求截口所在椭圆的方程.
已知,函数. (1)当时,若,求函数的单调区间; (2)若关于的不等式在区间上有解,求的取值范围;
已知函数(,为常数),且为的一个极值点. (Ⅰ) 求的值; (Ⅱ) 求函数的单调区间; (Ⅲ) 若函数有3个不同的零点,求实数的取值范围.