已知函数f(x)=x3+x2+ax+b,g(x)=x3+x2+ 1nx+b,(a,b为常数).(1)若g(x)在x=l处的切线方程为y=kx-5(k为常数),求b的值;(2)设函数f(x)的导函数为,若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围;(3)令F(x)=f(x)-g(x),若函数F(x)存在极值,且所有极值之和大于5+1n2,求a的取值范围.
(本小题满分12分)已知函数(). (1)试讨论在区间上的单调性; (2)当时,曲线上总存在相异两点,,使得曲线在点,处的切线互相平行,求证:.
(本小题满分12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直.∥,,,. (1)求证:; (2)求直线与平面所成角的正弦值; (3)线段上是否存在点,使// 平面?若存在,求出;若不存在,说明理由.
(本小题满分12分)在中,角所对的边为,已知。 (1)求的值; (2)若的面积为,且,求的值。
(本小题满分12分)设函数的导函数为,若函数的图像关于直线对称,且. (1)求实数a、b的值 (2)若函数恰有三个零点,求实数的取值范围。
(本小题满分12分)已知函数. (1)求的值; (2)若对于任意的,都有,求实数的取值范围.