已知函数f(x)=x3+x2+ax+b,g(x)=x3+x2+ 1nx+b,(a,b为常数).(1)若g(x)在x=l处的切线方程为y=kx-5(k为常数),求b的值;(2)设函数f(x)的导函数为,若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围;(3)令F(x)=f(x)-g(x),若函数F(x)存在极值,且所有极值之和大于5+1n2,求a的取值范围.
已知R. (1)求函数的最大值,并指出此时的值. (2)若,求的值.
已知数列的前n项和(n为正整数)。 (1)令,求证数列是等差数列, (2)求数列的通项公式; (3)令,。是否存在最小的正整数,使得对于都有恒成立,若存在,求出的值。不存在,请说明理由。
如图,甲船以每小时海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西的方向处,此时两船相距20海里.当甲船航行20分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?
已知函数,求 (1)函数的单调减区间与周期 (2)当时,求函数的值域
已知一元二次不等式的解集为R 1)若实数的取值范围为集合A,求A 2)对任意的,都使得不等式恒成立。求的取值范围。