、若函数y=f(x)是周期为2的偶函数,当x∈[2,3]时,f(x)=x-1.在y=f(x)的图象上有两点A、B,它们的纵坐标相等,横坐标都在区间[1,3]上,(1)求当x∈[1,2]时,f(x)的解析式;(2)定点C的坐标为(0,a)(其中2<a<3),求△ABC面积的最大值.
设数列满足:。 (1)求证:; (2)若,对任意的正整数恒成立,求的取值范围。
若向量,其中,记函数,若函数的图象与直线为常数)相切,并且切点的横坐标依次成公差为的等差数列。 (1)求的表达式及的值; (2)将函数的图象向左平移,得到的图象,当时,的交点横坐标成等比数列,求钝角的值。
(本小题满分12分)已知直线经过椭圆的左顶点A和上顶点D,椭圆的右顶点为,点和椭圆上位于轴上方的动点,直线,与直线分别交于两点。 (I)求椭圆的方程; (Ⅱ)求线段MN的长度的最小值; (Ⅲ)当线段MN的长度最小时,在椭圆上是否存在这 样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由
(本小题满分12分)己知函数 (1)求的单调区间; (2)若时,恒成立,求的取值范围; (3)若设函数,若的图象与的图象在区间上有两个交点,求的取值范围。
(本小题满分12分) 等比数列{}的前n项和为, 已知对任意的,点,均在函数且均为常数)的图像上. (1)求r的值; (2)当b=2时,记求数列的前项和