正方体,,E为棱的中点.(Ⅰ) 求证:(Ⅱ) 求证:平面;(Ⅲ)求三棱锥的体积.
设,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且,,成等差数列。(Ⅰ)求;(Ⅱ)若直线的斜率为1,求b的值。
如图,已知四棱锥的底面为等腰梯形,∥,,垂足为,是四棱锥的高。(Ⅰ)证明:平面 平面;(Ⅱ)若,60°,求四棱锥的体积。
为了参加贵州省高中篮球比赛,某中学决定从四个篮球较强的班级的篮球队员中选出人组成男子篮球队,代表该地区参赛,四个篮球较强的班级篮球队员人数如下表:
(Ⅰ)现采取分层抽样的方法从这四个班中抽取运动员,求应分别从这四个班抽出的队员人数;(Ⅱ)该中学篮球队奋力拼搏,获得冠军.若要从高三年级抽出的队员中选出两位队员作为冠军的代表发言,求选出的两名队员来自同一班的概率.
已知,,且.(I)将表示成的函数,并求的最小正周期;(II)记的最大值为, 、、分别为的三个内角、、对应的边长,若且,求的最大值.
已知函数(Ⅰ)求在点处的切线方程;(Ⅱ)若存在,满足成立,求的取值范围;(Ⅲ)当时,恒成立,求的取值范围.