某地区发生流行性病毒感染,居住在该地区的居民必须服用一种药物预防,规定每人每天早晚八时各服一片,现知该药片每片含药量为220毫克,若人的肾脏每12小时从体内滤出这种药的60%,在体内的残留量超过386毫克,就将产生副作用.(1) 某人上午八时第一次服药,问到第二天上午八时服完药时,这种药在他体内还残留多少?(2) 长期服用的人这种药会不会产生副作用?
已知正三棱柱ABC –A1B1C1中,AB = 2,AA1 =,点F,E分别是边A1C1和侧棱BB1的中点. (Ⅰ)证明:FB⊥平面AEC; (Ⅱ)求二面角F-AE-C的余弦值.
已知等比数列{an}的前n项和为Sn,A1="3," 且3S1 , 2S2 , S3成等差数列. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn=log3an,求Tn=b1b2 - b2b3 + b3b4 - b4b5 + … + b2n-1b2n - b2nb2n+1
已知函数 (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)当时,若在区间上的最小值为,求的取值范围; (Ⅲ)若对任意,且恒成立,求的取值范围.
某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件. (1)设一次订购x件,服装的实际出厂单价为p元,写出函数的表达式; (2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?
已知函数 (Ⅰ)求的最小正周期;(Ⅱ)求函数的单调递增区间; (Ⅲ)求函数在区间上的取值范围.