在等比数列中,,试求:(I)和公比;(II)前6项的和.
(本小题13分)如图1,在三棱锥P—ABC中,平面ABC,,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示。(1)证明:平面PBC;(2)求三棱锥D—ABC的体积;(3)在的平分线上确定一点Q,使得平面ABD,并求此时PQ的长。
(本小题13分)已知关于x的一元二次函数,分别从集合P和Q中随机取一个数a和b得到数列。(1)若,,列举出所有的数对,并求函数有零点的概率;(2)若,,求函数在区间上是增函数的概率。
(本小题12分)一企业生产的某产品在不做电视广告的前提下,每天销售量为b件,经市场调查后得到如下规律:若对产品进行电视广告的宣传,每天的销售量S(件)与电视广告的播放量n(次)的关系可用如图所示的程序框图来体现。(1)试写出该产品每天的销售量S(件)关于电视广告的播放量n(次)的函数关系式;(2)要使该产品每天的销售量比不做电视广告时的销售量至少增加90﹪,则每天电视广告的播放量至少需要多少次?
(本小题12分)本某中学为研究学生的身体素质与课外体育锻炼时间的关系,对400名高一学生的一周课外体育锻炼时间进行调查,结果如下表所示:
(1)完成频率分布直方图,并估计该中学高一学生每周参加课外体育锻炼时间的平均值(同一组中的数据用该区间的组中值作代表);(2)现采用分层抽样的方法抽取容量为20的样本,①应抽取多少名课外体育锻炼时间为分钟的学生;②若从①中被抽取的学生中随机抽取2名,求这2名学生课外体育锻炼时间均为分钟的概率。
(本小题满分14分) 已知在单位圆x²+y²=1上任取一点M,作MN⊥x轴,垂足为N, = 2. (Ⅰ)求动点Q的轨迹的方程; (Ⅱ)设点,点为曲线上任一点,求点到点距离的最大值; (Ⅲ)在的条件下,设△的面积为(是坐标原点,是曲线上横坐标为的点),以为边长的正方形的面积为.若正数满足,问是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.