某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (2)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望.
(本小题满分12分) 已知数列{an}的前n项和为Sn,点在直线上.数列{bn}满足,前9项和为153. (Ⅰ)求数列{an}、{bn}的通项公式; (Ⅱ)设,数列{cn}的前n和为Tn,求使不等式对一切都成立的最大正整数k的值.
(本小题满分12分) 在中,角所对的三边分别为成等比数列,且. (1)求的值; (2)设,求的值.
(本小题满分12分)在数列中, ,,. (Ⅰ)证明数列是等比数列; (II)求数列的前项和. (Ⅲ)证明对任意,不等式成立.
(本小题满分12分)设. (Ⅰ)求的最大值及最小正周期; (Ⅱ)若锐角满足,求的值.
(本题满分12分)如图所示,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的任意一点,求证:平面PAC⊥平面PBC.