某工厂某种航空产品的年固定成本为万元,每生产件,需另投入成本为,当年产量不足件时,(万元).当年产量不小于件时,(万元).每件商品售价为万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润(万元)关于年产量(件)的函数解析式;(2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?
(本小题满分16分)已知函数的定义域为(0,),且,设点P是函数图象上的任意一点,过点P分别作直线和轴的垂线,垂足分别为M、N.(1)求的值;(2)问:是否为定值?若是,则求出该定值,若不是,请说明理由;(3)设O为坐标原点,求四边形OMPN面积的最小值.
(本小题满分14分)如图,在半径为的圆形(O为圆心)铝皮上截取一块矩形材料OABC,其中点B在圆弧上,点A、C在两半径上,现将此矩形铝皮OABC卷成一个以AB为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱的体积为.(1)写出体积V关于的函数关系式;(2)当为何值时,才能使做出的圆柱形罐子体积V最大?
(本小题满分14分)如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥平面BCE;(2)求证:AE∥平面BFD.
(本小题满分14分)在△ABC中,AB=,BC=1,.(1)求的值;(2)求的值.
(本小题满分12分)设函数(其中,是自然对数的底数)(I)若处的切线方程;(II)若函数上有两个极值点.①实数m的范围; ②证明的极小值大于e.