(本小题满分12分)如图,椭圆的右焦点与抛物线的焦点重合,过且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且(Ⅰ)求椭圆的标准方程;(Ⅱ)设P为椭圆上一点,若过点M(2,0)的直线与椭圆相交于不同两点A和B,且满足(O为坐标原点),求实数t的取值范围.
(本小题满分10分)在△ABC中,a、b、c分别是角A、B、C所对的边,且(I)求c; (II)若的最大值。
(本小题满分12分)如图,在四棱锥V—ABCD中,底面ABCD是矩形,侧棱VA⊥底面ABCD,E、F、G分别为VA、VB、BC的中点。(I)求证:平面EFG//平面VCD; (II)当二面角V—BC—A、V—DC—A分别为45°、30°时,求直线VB与平面EFG所成的角。
如图,已知AD是△ABC的外角ÐEAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连结FB、FC. (Ⅰ)求证:FB=FC; (Ⅱ)求证:FB2=FA·FD; (Ⅲ)若AB是△ABC外接圆的直径,ÐEAC=120°,BC=6cm,求AD的长.
已知函数.(Ⅰ)解不等式≤4;(Ⅱ)若存在x使得≤0成立,求实数a的取值范围.
在直角坐标系中,以原点O为极点,x 轴为正半轴为极轴,建立极坐标系.设曲线(为参数); 直线.(Ⅰ)写出曲线的普通方程和直线l的直角坐标方程;(Ⅱ)求曲线上的点到直线l的最大距离.