(本小题满分12分)如图,在四棱锥V—ABCD中,底面ABCD是矩形,侧棱VA⊥底面ABCD,E、F、G分别为VA、VB、BC的中点。(I)求证:平面EFG//平面VCD; (II)当二面角V—BC—A、V—DC—A分别为45°、30°时,求直线VB与平面EFG所成的角。
己知椭圆C:(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,过F点的直线与椭圆C交于不同两点. (1)求椭圆C的方程; (2)设直线斜率为1,求线段的长; (3)设线段的垂直平分线交轴于点P(0,y0),求的取值范围.
如图,在三棱柱ABC-A1B1C1中,C1C⊥底面ABC,AC=BC=CC1=2,AC⊥BC,点D是AB的中点. (1)求证:AC1∥平面CDB1; (2)求四面体B1C1CD的体积.
2015年某市某区高考文科数学成绩抽样统计如下表: (1)求出表中m、n、M、N的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;(纵坐标保留了小数点后四位小数) (2)若2015年某市高考文科考生共有20000人,试估计全市文科数学成绩在90分及90分以上的人数; (3)香港某大学对内地进行自主招生,在参加面试的学生中,有7名学生数学成绩在140分以上,其中男生有4名,要从7名学生中录取2名学生,求其中恰有1名女生被录取的概率.
如图,已知四边形与均为正方形,平面平面. (1)求证:平面; (2)求二面角的大小.
已知椭圆:,直线交椭圆于两点. (Ⅰ)求椭圆的焦点坐标及长轴长; (Ⅱ)求以线段为直径的圆的方程.