(本小题满分13分)已知抛物线的顶点在原点,焦点在轴上,且抛物线上横坐标为1的点到的距离为2 ,过点的直线交抛物线于,两点.(Ⅰ)求抛物线的方程;(Ⅱ)若,求直线的斜率;(Ⅲ)设点在线段上运动,原点关于点的对称点为,求四边形面积的最小值.
已知是数列的前项和,(,),且. (1)求的值,并写出和的关系式; (2)求数列的通项公式及的表达式; (3)我们可以证明:若数列有上界(即存在常数,使得对一切恒成立)且单调递增;或数列有下界(即存在常数,使得对一切恒成立)且单调递减,则存在.直接利用上述结论,证明:存在.
(1)求以为渐近线,且过点的双曲线的方程; (2)求以双曲线的顶点为焦点,焦点为顶点的椭圆的方程; (3)椭圆上有两点,,为坐标原点,若直线,斜率之积为,求证:为定值
已知向量,,函数. (1)求函数的最小正周期; (2)若,,是的内角,,的对边,,,且是函数在上的最大值,求:角,角及边的大小.
已知椭圆的焦点坐标为,长轴等于焦距的2倍. (1)求椭圆的方程; (2)矩形的边在轴上,点、落在椭圆上,求矩形绕轴旋转一周后所得圆柱体侧面积的最大值.
(理)对数列和,若对任意正整数,恒有,则称数列是数列的“下界数列”. (1)设数列,请写出一个公比不为1的等比数列,使数列是数列的“下界数列”; (2)设数列,求证数列是数列的“下界数列”; (3)设数列,构造,,求使对恒成立的的最小值.