(本小题满分12分)某校举行中学生“珍爱地球·保护家园”的环保知识比赛,比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行;每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为,且相互间没有影响.(Ⅰ)求选手甲进入复赛的概率;(Ⅱ)设选手甲在初赛中答题的个数为,试求的分布列和数学期望.
设 是圆心在抛物线 上的一系列圆,它们的圆心的横坐标分别记为 ,已知 ,又 都与 轴相切,且顺次逐个相邻外切. (1)求 ; (2)求由 构成的数列 的通项公式; (3)求证: .
(在锐角中,分别是角所对的边,且(1)确定角的大小;(2)若,求面积的最大值.
已知某品牌汽车,购车费用是10万元,每年使用的保险费,养路费,汽油费约为 万元,汽车的维修费是第一年 万元,以后逐年递增 万元,问该品牌汽车使用多少年时,它的年平均费用最少?
已知函数,求(1)求的最小正周期及对称中心;(2)当时,求的最大值和最小值.
(等比数列的前项和为,已知求和公比的值.