(本小题满分12分)某校举行中学生“珍爱地球·保护家园”的环保知识比赛,比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行;每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为,且相互间没有影响.(Ⅰ)求选手甲进入复赛的概率;(Ⅱ)设选手甲在初赛中答题的个数为,试求的分布列和数学期望.
(本小题满分12分) 甲乙两位学生参加数学竞赛培训,在培训期间他们参加5次预赛成绩记录如下: 甲: 78 76 74 90 82 乙: 90 70 75 85 80 (1)用茎叶图表示这两组数据; (2)从甲乙两人成绩中各随机抽取一个,求甲的成绩比乙高的概率; (3)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.
(本小题满分12分) 在四棱锥中,侧面是边长为2的正三角形,且与底面垂直;底面是菱形,,为的中点. (1)求四棱锥的体积; (2)求证:平面.
(本小题满分12分) 若平面向量(R),函数. (1)求函数的值域; (2)记△的内角的对边长分别为,若,且,求角的值.
(本小题满分10分) 若数列满足N*). (1)求的通项公式; (2)等差数列的各项均为正数,其前n项和为,且,又成等比数列,求.
甲盒中有一个红色球,两个白色球,这3个球除颜色外完全相同,有放回地连续抽取2个,每次从中任意地取出1个球,用列表的方法列出所有可能结果,计算下列事件的概率。 (1)取出的2个球都是白球; (2)取出的2个球中至少有1个白球.