已知函数,求(1)求的最小正周期及对称中心;(2)当时,求的最大值和最小值.
(本小题满分14分) 已知函数对于任意(),都有式子成立(其中为常数). (Ⅰ)求函数的解析式; (Ⅱ)利用函数构造一个数列,方法如下: 对于给定的定义域中的,令,,…,,… 在上述构造过程中,如果(=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果不在定义域中,那么构造数列的过程就停止. (ⅰ)如果可以用上述方法构造出一个常数列,求的取值范围; (ⅱ)是否存在一个实数,使得取定义域中的任一值作为,都可用上述方法构造出一个无穷数列?若存在,求出的值;若不存在,请说明理由; (ⅲ)当时,若,求数列的通项公式.
如图所示,已知圆,定点,为圆上一动点,点在上,点在上,且满足,,点的轨迹为曲线. (Ⅰ) 求曲线的方程; (Ⅱ) 若点在曲线上,线段的垂直平分线为直线,且成等差数列,求的值,并证明直线过定点; (Ⅲ)若过定点(0,2)的直线交曲线于不同的两点、(点在点、之间),且满足,求的取值范围.
(本小题满分14分) 如图,三棱锥中,,. (Ⅰ)求证:平面;(Ⅱ)若为线段上的点,设,问为何值时能使 直线平面; (Ⅲ)求二面角的大小.
(本小题满分12分) 已知函数,在函数图像上一点处切线的斜率为3. (Ⅰ)若函数在时有极值,求的解析式; (Ⅱ)若函数在区间,上单调递增,求的取值范围.
袋中装有大小、质地相同的8个小球,其中红色小球4个,蓝色和白色小球各 2个.某学生从袋中每次随机地摸出一个小球,记下颜色后放回.规定每次摸出红色小球记2分,摸出蓝色小球记1分,摸出白色小球记0分. (Ⅰ)求该生在4次摸球中恰有3次摸出红色小球的概率; (Ⅱ)求该生两次摸球后恰好得2分的概率; (Ⅲ)求该生两次摸球后得分的数学期望.