(本小题满分12分)如图,点C是以AB为直径的圆O上不与A、B重合的一个动点,S是圆O所在平面外一点,且总有SC⊥平面ABC,M是SB的中点,AB=SC=2.(Ⅰ)求证:OM⊥BC;(Ⅱ)当四面体S-ABC的体积最大时,设直线AM与平面ABC所成的角为,二面角B-SA-C的大小为,分别求的值.
设为正整数,规定:,已知.(1)解不等式:≤;(2)设集合{0,1,2},对任意,证明:;(3)探求;(4)若集合{,[0,2]},证明:中至少包含有8个元素.
已知 。 (1)解关于a的不等式.(2)当不等式f(x)>0的解集为(-1,3)时,求实数的值
函数f(x)=(a,b是非零实常数),满足f(2)=1,且方程f(x)=x有且仅有一个解。(1)求a、b的值;(2)是否存在实常数m,使得对定义域中任意的x,f(x)+f(m–x)=4恒成立?为什么?(3)在直角坐标系中,求定点A(–3,1)到此函数图象上任意一点P的距离|AP|的最小值。
已知不等式x2–3x+t<0的解集为{x|1<x<m, mÎR} (1)求t, m的值; (2)若f(x)= –x2+ax+4在(–∞,1)上递增,求不等式log a (–mx2+3x+2–t)<0的解集。
设函数在上满足, 且在闭区间[0, 7]上只有. ⑴试判断函数的奇偶性;⑵试求方程在闭区间上的根的个数, 并证明你的结论.