(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:.(1)直线的参数方程化为极坐标方程;(2)求直线的曲线交点的极坐标()
已知函数,求函数在区间上的最小值.
已知复数的实部为,复数的虚部为,且,是实数,求复数和.
(本小题满分14分)已知函数,,且函数与的图象至多有一个公共点。 (Ⅰ)证明:当时,; (Ⅱ)若不等式对题设条件中的总成立,求的最小值.
(本小题满分15分)已知数列中,(实数为常数),,是其前项和,且.数列是等比数列,,恰为与的等比中项. (Ⅰ)证明:数列是等差数列; (Ⅱ)求数列的通项公式; (Ⅲ)若,当时,的前项和为,求证:对任意,都有.
(本小题满分15分)已知椭圆C:的离心率为,左、右焦点分别为,点在椭圆C上,且,的面积为. (Ⅰ)求椭圆的方程; (Ⅱ)直线与椭圆相交于,两点.点,记直线的斜率分别为,当最大时,求直线的方程.