如图,已知抛物线y= —x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0). (1)求抛物线的解析式及其对称轴方程; (2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由; (3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值; (4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由
为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成了如下两幅不完整的统计图: (1)将该条形统计图补充完整. (2)求该校平均每班有多少名留守儿童? (3)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90o,且EF交正方形外角的平分线CF于点F. (1)证明:△AGE≌△ECF; (2)求△AEF的面积.
如图1,已知菱形ABCD的边长为2,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点. (1)求这条抛物线的函数解析式; (2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<) ①当t=1时,△ADF与△DEF是否相似?请说明理由; ②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)
如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F. (1)如图1,求证:AE=DF; (2)如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,求证:△GEF是等腰直角三角形 (3)如图3,若AB=,过点M作 MG⊥EF交线段BC的延长线于点G. ①直接写出线段AE长度的取值范围; ②判断△GEF的形状,并说明理由.
某公司为了更好得节约能源,决定购买一批节省能源的10台新机器。现有甲、乙两种型号的设备,其中每台的价格、工作量如下表。经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元.
(1)求a, b的值; (2)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供选择; (3)在(2)的条件下,若每月要求产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.