甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?
先化简,再求值:,其中,.
如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E. (1)求证:EO=FO; (2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论; (3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论
某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①,图②时漏填了部分数据. 根据上述信息,回答下列问题: (1)求该厂一月份产量占第一季度总产量的百分比? (2)该厂第一季度的总产量是多少?并在图①中补完直方图. (3)该厂质检科从第一季度各月的产品中随机抽样,抽检结果发现样品在一月、二月、三月的合格率分别为95%、97%、98%.请你估计:该厂第一季度大约生产了多少件合格的产品?
已知:如图正方形ABCD,E是BC的中点,F在AB上,且BF=,猜想EF与DE的位置关系,并说明理由.
在平行四边形中,分别为边的中点,连接. (1)求证:. (2)若,则四边形是什么特殊四边形?请证明你的结论.