(本小题满分14分)在单调递增数列中,,,且成等差数列,成等比数列,.(1)分别计算,和,的值;(2)求数列的通项公式(将用表示);(3)设数列的前项和为,证明:,
某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧BC的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计) (Ⅰ)设(弧度),将绿化带总长度表示为的函数; (Ⅱ)试确定的值,使得绿化带总长度最大.
已知数列的前项和为,且 (1)求数列的通项公式; (2)数列中,令, ,求证:.
如图,在四棱柱中,侧面⊥底面,,底面为直角梯形,其中∥,,,为中点. (1)求证:∥平面; (2)求锐二面角的余弦值.
用数学归纳法证明:
已知函数. (Ⅰ)求函数的单调递减区间; (Ⅱ)设时,函数的最小值是,求的最大值.