已知:在矩形ABCD中,E为边BC上的一点,AE⊥DE,AB=12,BE=,F为线段BE上一点,EF=7,连接AF。如图1,现有一张硬纸片△GMN,∠NGM=900,NG=6,MG=,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上。如图2,△GMN从图1的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时,点P从A点出发,以每秒2个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ。当点G到达线段AE上时,△GMN和点P同时停止运动。设运动时间为t秒,解答问题:
(1)在整个运动过程中,当点G在线段AE上时,求t的值;
(2)在整个运动过程中,是否存在点P,使△APQ是直角三角形,若存在,求出t的值;若不存在,说明理由。