如图,已知:抛物线C1:,将抛物线C1向上平移m个单位(m>0)得抛物线C2,C2的顶点为G,与y轴交于M,点N是M关于x轴的对称点,点P()在直线MG上。问:当m为何值时,在抛物线C2上存在点Q,使得以M、N、P、Q为顶点的四边形为平行四边形?
先化简,再求值:,其中a=,b=1.
计算题 (1) (2) (3) (4)
若a,b互为相反数,c,d互为倒数,=2,求的值.
画出一条数轴,在数轴上表示数,2,-(-3),,0,并把这些数用“<”连接起来.
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽(a)”,中间的这条直线在△ABC内部的线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形的面积等于水平宽与铅垂高乘积的一半.解答问题:如图2,顶点为C(1,4)的抛物线y=ax2+bx+c交x轴于点A(3,0)、交y轴于点B.(1)求抛物线和直线AB的解析式.(2)点P是抛物线(在第一象限内)上的一个动点,连接PA、PB.①当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB.②是否存一点P,使S△PAB=S△CAB?若存在,求出点P的坐标;若不存在,请说明理由.