已知函数的最大值为2.(1)求函数在的单调递增区间;(2)△ABC中,,角A、B、C所对的边分别是a、b、c,且C=60,c=3,求的值.
已知函数,设曲线在与轴交点处的切线为,为的导函数,满足. (1)求的单调区间. (2)设,,求函数在上的最大值;
如图,是棱长为1的正方体,四棱锥中,平面,。 (Ⅰ)求证: (Ⅱ)求直线与平面所成角的正切值。
设数列满足:。 (1)求证:; (2)若,对任意的正整数恒成立,求的取值范围。
若向量,其中,记函数,若函数的图象与直线为常数)相切,并且切点的横坐标依次成公差为的等差数列。 (1)求的表达式及的值; (2)将函数的图象向左平移,得到的图象,当时,的交点横坐标成等比数列,求钝角的值。
(本小题满分12分)已知直线经过椭圆的左顶点A和上顶点D,椭圆的右顶点为,点和椭圆上位于轴上方的动点,直线,与直线分别交于两点。 (I)求椭圆的方程; (Ⅱ)求线段MN的长度的最小值; (Ⅲ)当线段MN的长度最小时,在椭圆上是否存在这 样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由