(年广西柳州10分)如图,正方形ABCD的边长为l,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.(1)求线段PQ的长;(2)问:点P在何处时,△PFD∽△BFP,并说明理由.
某超市上月销售一种优质新米,平均售价为10元/千克,月销售量为1000千克。经市场调查,若将该种新米价格调低至元/千克,则本月销售量(千克)与(元/千克)之间满足,且当=7时,=2000;当=5时,=4000.(1)求与之间的函数关系式。(2)已知该种新米上月的进价为5元/千克,本月的进价为4元/千克,要使本月销售该种新米获利比上月增加20%,同时又要让顾客得到实惠,则该种新米的价格应定为多少元?
某商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率
如图,在⊙0中,AD=BC求证:AB=CD.
已知在Rt△ABC,AB=AC,∠BAC=90°,过A的任一条直线AN,BD⊥AN于D,CE⊥AN于E。 (1)求证:DE=BD-CE (2)如将直线AN绕A点沿顺时针方向旋转,使它不经过△ABC的内部,再作BD⊥AN于D,CE⊥AN于E,那么DE、DB、CE之间存在等量关系吗?若存在,请证明你的结论?
已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF (2)BE=CF.