我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.① ;②;③;④
已知中心在原点,焦点在轴上的椭圆,离心率,且经过抛物线的焦点.(1)求椭圆的标准方程;(2)若过点的直线(斜率不等于零)与椭圆交于不同的两点(在之间),与面积之比为,求的取值范围.
已知函数的图象为曲线C。(1)若曲线C上存在点P,使曲线C在P点处的切线与轴平行,求的关系;(2)若函数时取得极值,求此时的值;(3)在满足(2)的条件下,的取值范围。
已知数列是首项为,公比的等比数列,设,数列.(1)求数列的通项公式;(2)求数列的前n项和Sn.
已知(1)求函数的最小正周期;(2)当的最大值及最小值。
如图,已知四棱锥中,⊥平面, 是直角梯形,,90º,. (1)求证:⊥; (2)在线段上是否存在一点,使//平面, 若存在,指出点的位置并加以证明;若不存在,请说明理由.