(2014年山东济南9分)如图1,有一组平行线∥∥∥,正方形ABCD的四个顶点分别在上,EG过点D且垂直于于点E,分别交于点F,G,. (1)AE= ,正方形ABCD的边长= ; (2)如图2,将∠AEG绕点A顺时针旋转得到,旋转角为,点在直线上,以为边在的左侧作菱形,使点分别在直线上. ①写出与的函数关系并给出证明; ②若,求菱形的边长.
2021年是中国共产党建党100周年华诞.“五一”后某校组织了八年级学生参加建党100周年知识竞赛,为了了解学生对党史知识的掌握情况,学校随机抽取了部分同学的成绩作为样本,把成绩按不及格、合格、良好、优秀四个等级分别进行统计,并绘制了如下不完整的条形统计图与扇形统计图:
请根据图中提供的信息解答下列问题:
(1)根据给出的信息,将这两个统计图补充完整(不必写出计算过程);
(2)该校八年级有学生650人,请估计成绩未达到“良好”及以上的有多少人?
(3)“优秀”学生中有甲、乙、丙、丁四位同学表现突出,现从中派2人参加区级比赛,求抽到甲、乙两人的概率.
如图,在 ΔABC 中, D 在 AC 上, DE / / BC , DF / / AB .
(1)求证: ΔDFC ∽ ΔAED ;
(2)若 CD = 1 3 AC ,求 S ΔDFC S ΔAED 的值.
先化简再求值: ( a - 2 + 1 a ) ÷ ( a - 1 ) 2 | a | ,其中 a 使反比例函数 y = a x 的图象分别位于第二、四象限.
计算: 16 + ( 4 - π ) 0 + ( - 1 ) - 1 - 6 sin 30 ° .
在平面直角坐标系 xOy 中,已知抛物线: y = a x 2 + bx + c 交 x 轴于 A ( - 1 , 0 ) , B ( 3 , 0 ) 两点,与 y 轴交于点 C ( 0 , - 3 2 ) .
(1)求抛物线的函数解析式;
(2)如图1,点 D 为第四象限抛物线上一点,连接 OD ,过点 B 作 BE ⊥ OD ,垂足为 E ,若 BE = 2 OE ,求点 D 的
坐标;
(3)如图2,点 M 为第四象限抛物线上一动点,连接 AM ,交 BC 于点 N ,连接 BM ,记 ΔBMN 的面积为 S 1 , ΔABN 的面积为 S 2 ,求 S 1 S 2 的最大值.