(年四川南充10分)如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.(1)求抛物线的解析式;(2)当m为何值时,S四边形OBDC=2S△BPD;(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.【感知】如图1,当点H与点C重合时,可得FG=FD.【探究】如图2,当点H为边CD上任意一点时,猜想FG与FD的数量关系,并说明理由.【应用】在图2中,当AB=5,BE=3时,利用探究结论,求FG的长.
数学课上,李老师出示范了如下框中的题目. 小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系.请你直接写出结论:AE DB(填“>”、“<”或“=”);(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”、“<”或“=”).理由如下:如图2过点E作EF∥BC,交AC于点F;(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).
已知A、B两地的路程为240.某经销商每天都要用汽车或火车将保鲜品一次性由A地运往B地.受各种因素限制,下周只能采取用汽车和火车中的一种进行运输且需提前预定.现有货运收费项目及收费标准表、行驶路/与行驶时间/s的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:
(1)汽车的速度为 /h,火车的速度为 /h;(2)设每天用汽车和火车运输的总费用分别为/元和/元,分别求、与的函数关系式(不必写出的取值范围),及为何值时>;(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输费用较省?
如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在轴的正半轴上,点A在反比例函数(>0)的图象上,点D的坐标为(4,3).(1)求的值;(2)若菱形ABCD向右平移,使点D落在反比例函数(>0)的图象上,求菱形ABCD平移的距离.
丁丁要制作一个形如图1所示的风筝,想在一个矩形材料中裁剪出如图2阴影所示的梯形翅膀,请你根据图2中的数据帮丁丁计算出BE、CD的长度(精确到个位,≈1.7)