(年湖南益阳12分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.
如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与x轴交于A,B两点. (1)求A,B两点的坐标; (2)若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式.
如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H. (1)求证:CF=DG; (2)求出∠FHG的度数.
某班同学在一次综合实践活动中,对本县居民参加“全民医保”情况进行了调查,同学们利用节假日随机调查了3000人,对调查结果进行了统计分析,绘制出两幅不完整的统计图: [注:图中A表示城镇职工基本医疗保险;B表示城镇居民基本医疗保险;C表示“新型农村合作医疗”;D表示其他情况] (1)补全条形统计图; (2)在本次调查中,B类人数占被调查人数的百分比为 ;扇形统计图中D区域所对应的圆心角的大小为 . (3)据了解,国家对B类人员每人每年补助210元.已知该县人口数约为100万,请估计该县B类人员每年享受国家补助共多少元?
如图,已知一次函数y=k1x+b(k1≠0)的图象分别与x轴,y轴交于A,B两点,且与反比例函数(k2≠0)的图象在第一象限的交点为C,过点C作x轴的垂线,垂足为D,若OA=OB=OD=2. (1)求一次函数的解析式; (2)求反比例函数的解析式.
已知ab=﹣3,a+b=2.求代数式a3b+ab3的值.