(年福建南平12分)如图,已知抛物线图象经过A(﹣1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m﹣1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D分别作DE∥BC交AC于E,DF∥AC交BC于F.①求证:四边形DECF是矩形;②连结EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.
(内江)如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上. (1)试说明CE是⊙O的切线; (2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB; (3)设点D是线段AC上任意一点(不含端点),连接OD,当CD+OD的最小值为6时,求⊙O的直径AB的长.
(内江)如图,抛物线与x轴交于点A(,0)、点B(2,0),与y轴交于点C(0,1),连接BC. (1)求抛物线的函数关系式; (2)点N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(),求△ABN的面积S与t的函数关系式; (3)若且时△OPN∽△COB,求点N的坐标.
(达州)化简,并求值,其中a与2、3构成△ABC的三边,且a为整数.
(达州)学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,其测量步骤如下: (1)在中心广场测点C处安置测倾器,测得此时山顶A的仰角∠AFH=30°; (2)在测点C与山脚B之间的D处安置测倾器(C、D与B在同一直线上,且C、D之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角∠EGH=45°; (3)测得测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米; 已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB.(取1.732,结果保留整数)
(南充)如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE. 求证:(1)△AEF≌△CEB; (2)AF=2CD.