(年广西南宁10分)如图甲,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1)试判断BE与FH的数量关系,并说明理由;(2)求证:∠ACF=90°;(3)连接AF,过A,E,F三点作圆,如图乙. 若EC=4,∠CEF=15°,求的长.
某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择: 方案一:从纸箱厂定制购买,每个纸箱价格为4元; 方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,工厂需要一次性投入机器租赁、安装等费用16000元,每加工一个纸箱还需成本费2.4元. (1)若需要这种规格的纸箱个,请分别写出从纸箱厂购买纸箱的费用y(元)和蔬菜加工厂自己加工制作纸箱的费用y2(元)关于(个)的函数关系式; (2)假设你是决策者,你认为应该选择哪种方案?并说明理由.
小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作: 请根据图中给出的信息,解答下列问题: (1)放入一个小球量筒中水面升高_______cm; (2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围); (3)量筒中至少放入几个小球时有水溢出?
已知:y-1与x+2成正比例,且x=1时,y=4. (1)写出与之间的函数关系式; (2)在图中画出此函数的图像; (3) 求此直线与坐标轴围成的三角形的面积. (4)观察图像,直接写出时的取值范围.
已知直线经过点,. (1)求直线的解析式; (2)若直线与直线相交于点,求点的坐标; (3)根据图象,直接写出关于的不等式的解集.
已知:如图,点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF. 求证:(1)△ABC≌△DEF; (2)BE=CF.