(本小题满分12分)设函数.(1)若函数在处有极值,求函数的最大值;(2)①是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由;②证明:不等式
设等差数列的前项和为,数列的前项和为满足 (Ⅰ)求数列的通项公式及数列的前项和; (Ⅱ)是否存在非零实数,使得数列为等比数列?并说明理由
如图,直三棱柱中,D是的中点. (1)证明:平面; (2)设,求异面直线与所成角的大小.
已知函数. (1)求函数的周期及单调递增区间; (2)在中,三内角A,B,C的对边分别为,已知函数的图象经过点,若,求a的值.
已知圆C经过点,和直线相切,且圆心在直线上. (1)求圆C的方程; (2)已知直线l经过原点,并且被圆C截得的弦长为2,求直线l的方程.
已知. (Ⅰ)关于的不等式恒成立,求实数的取值范围; (Ⅱ)设,且,求证:.