如图,经过原点的抛物线与轴的另一个交点为A.过点P(1,)作直线PM⊥轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连结CB,CP.(1)当=3时,求点A的坐标和BC的长;(2)当>1时,连结CA,当CA⊥CP时,求的值.(3)过点P作PE⊥PC且PE =PC,问是否存在,使得点E落x轴在上?若存在,求出所有满足要求的的值,并写出相对应的点E坐标;若不存在,请说明理由.
【改编题】(本题14分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F. (1)求证:OE=OF; (2)若CE=8,CF=6,求OC的长; (3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由. (4)在(3)的条件下,△ABC再满足什么条件,矩形AECF为正方形?
【改编题】如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF. (1)求证:BF=2AE; (2)若CD=,求△ABC的面积.
8分,观察下列各式及其验证过程: 验证:. 验证: (1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证; (2)针对上述各式反映的规律,写出用n(n为任意自然数,且n≥2)表示的等式,并给出证明.
如图,在□ABCD中,E,F分别为边AB和CD的中点,连接DE,BF,且AB=2AD=4. (1)求证:△AED≌△CFB; (2)当四边形DEBF为菱形时,求出该菱形的面积;
如图,ABCD中,点E、F在BD上,且BF=DE. (1)写出图中所有你认为全等的三角形; (2)延长AE交BC的延长线于G,延长CF交DA的延长线于H(请补全图形),证明四边形AGCH是平行四边形.