如图,在□ABCD中,E,F分别为边AB和CD的中点,连接DE,BF,且AB=2AD=4.(1)求证:△AED≌△CFB; (2)当四边形DEBF为菱形时,求出该菱形的面积;
如图所示,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE. 求证:△ABE∽△ADC .
如图,四边形ABCD是菱形,点E、F分别是边AD、CD的中点.求证:BE=BF.
计算:
如图,直线分别与x轴、y轴交于A、B两点;直线与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿x轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒). ⑴求点C的坐标. ⑵当0<t<5时,求S与t之间的函数关系式. ⑶求⑵中S的最大值. ⑷当t>0时,直接写出点(4,)在正方形PQMN内部时t的取值范围.
已知一次函数和反比例函数的图象交于点A(1,1). ⑴求两个函数的解析式; ⑵若点B是轴上一点,且△AOB是直角三角形,求B点的坐标.