(原创)已知集合M是满足下列性质的函数的全体:存在非零常数T,对任意∈R,有成立.(1)函数是否属于集合M?说明理由;(2)若定义在R上的偶函数满足,求证:; (3)设函数且)的图象与的图象有公共点,证明:∈M;
(本题满分12分)如图,正四棱柱ABCD—A1B1C1D1中,底面边长为,侧棱长为4,E、F分别是棱AB,BC的中点,EF与BD相交于G.(1)求证:B1EF⊥平面BDD1B1;(2)求点D1到平面B1EF的距离d;(3)求三棱锥B1—EFD1的体积V.
(本题满分12分)四棱锥P—ABCD中,底面ABCD是正方形,侧面PAD是边长为2的正三角形,且侧面PAD与底面ABCD垂直,E为PD的中点。(1) 求证:PB//面ACE;(2) 求二面角E—AC—D的大小。
(本题满分12分)在某次射击比赛中共有5名选手,出场时甲、乙、丙三人不能相邻。求(1)共有多少种不同的出场顺序?(2)若甲、乙、丙三人每次射击命中目标的概率都为0.6,求三人各射击一次至少有一 人命中目标的概率。(3)若甲、乙、丙三人每次射击命中目标的概率分别为0.7,0.6,0.5,求三人各射击一次至少有两人命中目标的概率。
(本题满分13分)在展开式中,求:(1)第6项; (2) 第3项的系数; (3)常数项。
在10件产品中,有8件合格品,2件次品.从这10件产品中任意抽出3件. 求(Ⅰ)抽出的3件产品中恰好有1件是次品的概率;(Ⅱ)抽出的3件产品中至少有1件是次品的概率.