选修4—5: 不等式选讲.(Ⅰ)设函数.证明:;(Ⅱ)若实数满足,求证:
已知函数.(Ⅰ)若点在角的终边上,求的值;(Ⅱ)若,求的值域.
(14分)已知定义在R上的函数对任意都有,且当时,(1)求证为奇函数;(2)判断在R上的单调性,并用定义证明;(3)若,对任意恒成立,求实数的取值范围。
已知(1)求点的轨迹C的方程;(2)若直线与曲线C交于A、B两点,并且A、B在y轴的同一侧,求实数k的取值范围.(3)设曲线C与x轴的交点为M,若直线与曲线C交于A、B两点,是否存在实数k,使得以AB为直径的圆恰好过点M?若有,求出k的值;若没有,写出理由.
数列{an}满足(1) 求数列{an}的通项公式;(2) 若数列{bn}满足:,求数列{bn}的通项公式;(3) 令 (n∈N*),求数列{cn}的前n项和Tn.
如图,已知四棱锥的正视图和侧视图均是直角三角形,俯视图为矩形,N、F分别是SC、AB的中点, ,.(1)求证:SA⊥平面ABCD(2)求证:NF∥平面SAD;(3)求二面角A-BN-C的余弦值.